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A method of constructing and classifying all symmetric periodic motions of a revers~le mechanical system is proposed. The 
principal solution of the above problem is given for the Hill problem, the restricted three-body problem (including the 
photogravitational problem), the problem of a heavy rigid body with a fixed point, and that of a heavy rigid body on a rough 
plane. In particular, problems requiring a systematic numerical study are thereby formulated. © 1997 Elsevier Science Ltd. All 
fights reserved. 

1. T H E  C O N S T R U C T I O N  O F  S Y M M E T R I C  P E R I O D I C  
M O T I O N S  O F  R E V E R S I B L E  S Y S T E M S  

M e c h a n i c a l  systen~;  c o n s t i t u t e  [1] a c lass  o f  l i n e a r l y  r eve r s ib l e  sys t ems  o f  t h e  f o r m  

u'=U(u,v), v'=V(u,v); ucR/, v~R" (l>~n) (1.1) 

U(u,-v) = -U(u, v), V(u,-v) = V(u, v) (1.2) 

Condition (1.2) means that system (1.1) is invariant under the mapping (u, v) ---> (u, -v) if the time t is 
reversed simultaneously. The set M = {th v: v = 0} is invariant under this mapping .  

Along with the s~lution u = u(t), v = v(t) system (1.1) also has the solution u = u(-t), v = v(-t) 
(Fig. la). The solutions are the same if v(0) = 0 (Fig. lb). In the case when M is intersected twice by 
the trajectory (Fig. lb)  we have a periodic motion that is symmetric about M, which is defined by the 
Heinbockel-Struble theorem [2]. 

Here  one can definitely observe a relation with the phase plane method for a conservative system 
with one degree of  freedom, which is obviously a system of the form (1.1), (1.2). In the conservative 
system considered here all periodic motions are symmetrical about the abscissa axis. 

Asymmetric periodic motion may also exist in the reversible system (1.1), (1.2) [3]. Moreover, the 
presence of domains of  dissipative and conservative behaviour is "typical" for the system. 

The simplest revers~le system in the plane 

u '=uu,  U'---u+cosu ( -Z<V~gg) 

has three singular points: (-1, 0), (0, _+mr2). The first point belongs to the invariant set, the other two being symmetric 
about the u axis (Fig. 2). The singular point on the abscissa axis is stable in the Lyapunov sense and is surrounded by 
periodic solutions (centre), and the point in the upper half-plane is unstable, all the trajectories in its neighbourhood being 
outgoing trajectories. "Ihe singular point in the lower half-plane is symptotically stable. Another example of asymptotic 
stability (in some of the variables) in a mechanical system of the form (1.1), (1.2) is provided by the problem of the Celtic 
stone [4]. 

A solution u = u(t), v = v(t) of system (1.1), (1.2) is symmetric about M if the sets {u(t), v(t)} and 
{u(-t), -v(-t)} are the same. Thus, such a solution intersects the invariant set at time t = 0, and in the 
case of  a T-periodic symmetric solution it also intersects M at time t = 7'/2. 

Therefore, the Heinbockel-Struble theorem gives the necessary and sufficient conditions for the 
existence of  a symmetric periodic solution. The assertion has a non-local nature. Local symmetric 
periodic motions fonTa a Lyapunov family [5-7]. An extension of  the Heinbockel-Struble theorem to 
the case of a toms is. given in [8]. 
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Let M x be the image of the invariant set M at time x obtained by means of (1.1). Then the intersection 
M Iq M x contains all the points of the invariant set that belong to symmetric periodic motions of period 
2x/k (k = 1, 2, 3 , . . . ) .  In this way, by varying x one can construct all symmetric periodic motions of a 
specified system of the form (1.1), (1.2). 

Theorem 1. Let f~x be the set of all symmetric (2r/k)-periodic motions (k = 1, 2, 3 . . . .  ) of the reversible 
system (1.1), (1.2). Then f~x fq M C M f) 1~. 

This assertion is fundamental. All initial points of symmetric periodic motions are contained in 
U0<x< +.(M N MX). The problem of the construction and classification of all such motions can be solved 
in this way. The set LIx(M N MX)\t_Jx(t~ x tq M) consists of invariant manifolds belonging to an invariant 
set. 

The set flit can be constructed numerically. Two problems arise: (a) the construction of M ~, (b) the 
search for points belonging to M fq M ~. The first problem can be solved in the standard way by numerical 
integration. To determine points in the intersection of M and M x, given that M x is constructed 
approximately with some accuracy provided by the computer, is a complicated problem. For n = 1 the 
problem can be solved correctly using the Cauchy theorem on the mean value of a continuous function. 
For n > 1 a correct solution is possible, provided that the system admits of first integrals. 

This approach is free from the disadvantage inherent in the numerical determination of invariant 
points of the corresponding mapping defined by a differential equation. If in the latter method a 
stationary point is defined to within some (possibly high) accuracy, there is no guarantee that the point 
corresponds to a periodic motion rather than to a torus. Therefore the problem of the dassitication of 
periodic motions becomes meaningless. 

Numerous examples of the construction and classification of symmetric periodic motions (orbits) can be found 
in celestial mechanics [9-18]. Euler was the first [12] to construct such orbits (Lyapunov family) in the neighbourhood 
of one of the collinear libration points in the restricted three-body problem, which he introduced. Hill [13] gave 
an example of orbits that are symmetric relative to two invariant sets simultaneously. For the restricted three-body 
problem the Poincar6 solutions of all three kinds are symmetric [14]. For the plane version of this problem Whittaker 
proposed [9] a criterion for the periodicity of an orbit, which is close to that stated in Theorem 1. Theorem 1 was 
in fact used in a numerical study at the Copenhagen observatory [9]. An approach similar to that considered above 
was proposed earlier in [15], but the condition used there is not sufficient for an orbit to be periodic. 

A mechanical system can be invariant under several mappings (t, x) ---> (-t, Gjx) simultaneously, where 
x = (u, v) r is a vector in phase space (T denotes transposition) [1, 7]. Now, if Gj is not restricted by the 

2 condition G ~ = id (the identity mapping), then we arrive at the system 

x ' = X ( x ) ,  G j X ( x ) + X ( G j x ) = 0 ,  x ~ R  m (1.3) 

where Gi is a non-degenerate mapping. 
It is obvious that system (1.3) is also reversible with the mapping 

G s = G~ ~ <3-.. E ~  (s~ +...+s t = 2~ + 1; s~ .... s t, tx E 7/) 
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Thus, the invariant set has the form 

M = u M  s, M s={x: x=GSx} ,(1.4) 

Theorem 2. Theorem I remains true for system (1.3) with the invariant set M = {u, v: v = 0} replaced 
by (1.4). 

Let us now consider a reversible system (1.1) or (1.3) 27r-periodic in t and invariant under the mapping 
(t, u, v) -+ (-t, u, -v) or (t, x) -+ (-t, G/x). Then the following result holds. 

Theorem 3. The set M tq M ~ contains the initial points for all symmetric (2rr/k)-periodic motions 
( k =  1,2,3 . . . .  ). 

2. T H E  H I L L  P R O B L E M  

A limiting versic,n of the restricted three-body problem, that is, the Hill problem is of considerable 
interest because of its importance in the theory of the motion of the Moon or a natural satellite of any 
other planet. From the mathematical point of view it is a beautiful example of a simple non-integrable 
reversible system with two invariant sets. Fundamental studies of this problem are related to the proof 
of the existence and the construction of symmetric periodic orbits [13, 16, 17]. 

The equations of motion of the Moon with coordinates (x,y) will be considered in a frame of reference 
revolving at angular velocity m (the ratio of the mean motions of the Sun and the Moon around the 
Earth) with origin at the centre of the Earth and the abscissa axis directed towards the Sun. Then 

d2x 2mdY +kX 
dx 2 -~x - ~  = 3m2 x 

(2.1) 

dr 2d2y ~- 2m dXd, c + ~ = 0, p2 = x 2 +y2 

where x is the dimensionless time and k is a constant. We have m = 0.08084893 for the Moon and m 
= --0.1461537 for the eighth satellite of Jupiter. 

System (2.1) admits of the energy integral 

x,2 +y,2 = 3m2x 2 + 2 k l p + h  (h =const) (2.2) 

where the prime denotes differentiation with respect to x. 
System (2.1) is a linearly reversible system of the form (1.1), (1.2) with two invariant sets: M1 = {x, 

y ,x ' ,y ' :y  = 0,x'  = 0} and M 2 = {x,y ,x ' ,y ' :x  = O,y" = 0}. On M 1 we have 

y,2 = 3m2x 2 + 2kilxl+h (2.3) 

On the other hand, if condition (2.3) is satisfied at some instant, then from (2.2) and (2.3) we 
obtain 

x "2 = 2 k l p - 2 k l l x l  << - 0 

which is possible only fix' = 0,y = 0, that is, (2.3) is a necessary and sufficient condition for the inclusion 
in the fixed-point set M1. 

By analogy, on M2 we have 

x "2 = 2kllyl+h (2.4) 

By (2.2) we obtain 

y,2 = [3m 2 _ k/lyl 3 ]x 2 +1 yl q o(x 2 / y2) 

It follows that x = 0.. y" = 0 whenever I Y 13 < k/(3m2) • 
The following assertion has been proved. 
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Theorem 4. For the motion at a given energy level h, (2.3) is a necessary and sufficient condition for 
a point of the phase space tobelong to the fixed-point set M1, and so is (2.4) for the set M2 in the domain 
l Y 13 < k/(3mZ). 

It follows that to construct all 2~-periodic motions symmetric about M1 or M2 at a fixed energy level 
it is necessary to consider the set (2.3) or (2.4) for l Y 13" < k/(3m 2) (respectively, the sets Mlh and M2h), 
to construct M~h (M~.h), andto determine the points belonging to the intersection Mlh N M]h (M2h N 
M~h). Since Mlh and M2h consist of curves, the problem of finding the points of intersection also has 
a correct solution in the case when M]h and M~h are constructed numerically with given accuracy. 

Let h = -v < 0. Then the Hill method yields the domain 

3m2x 2 +2k(x 2 + y2)-~ ~> v (2.5) 

of possible motions in the (x,y) plane (the unhatched area in Fig. 3). It follows that by considering (2.4) 
as a condition for the inclusion in M2 we can construct all periodic motions symmetric about M2 for 
v > v* = 3(3m2k2) v2 because there are no such motions outside the unhatched oval. Furthermore, if 
a motion starts in one of the domains 1, 2, or 3, it will remain there forever. 

In the case v > v* the set (2.3) is shown in Fig. 4. Equations (2.1) have two constant solutions 
x = _(k/(3m2)) tt2, y = 0 corresponding to relative equilibrium positions. The characteristic equation 
formed for these solutions has two real roots ±(1 + ~/28)1;Zm and a pair of purely imaginary roots ± 
(1 - x/28)~m. Since the relative equilibria belong to the invariant set Mb a Lyapunov family of symmetric 
periodic orbits corresponds to a pair of pure imaginary roots. Thus, for v dose to v* transitions of form 
1 exist (Fig. 4). Whether such transitions are maintained or not as v* increases can be decided as a 
result of numerical investigations. 

We shall now consider small values of re. When m = 0 we have the two-body problem and the system 
admits of the solution 

x = p(0)cos0, y =p(0)sin0 

a ( l - e2 )  d~ k 
p ( 0 ) = l + e c o s  O, p2(0) =[ka(l-e2)]  ~,  a = - -  

v 

(2.6) 

where e is the eccentricity, the motion being elliptic when I e I < 1 and, in particular, circular when 
e = 0. For small m * 0 the solution in a finite time interval can be constructed as a series hi m. Then, 
following [18], we obtain 

Fig. 3. 
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Fig. 4. 

x = p(O){(l - ~)cos0 + rlsin 0}, y = p(0){(l - ~)sin 0 -  qcos0} (2.7) 

~. = m{c I [ f ( O ) e  ~0 + f ( - O ) e  -~'0 ] + c 2 [ f ( O ) e  ~0 - f ( - O ) e  "° ]} + O(m 2 ) 

0 

rl = I {-2~(0) + m[p2 (O)(ka(l -e2))  ~ +c3]dO+mc4}+O(m 2) 

where c~ are constmlts, f(O) is a certain 2~-periodic function of O, and __.x are the characteristic exponents 
of the equation 

d2~ + ['4 3 
t, l+ os0) =0 

From the conditiion that this solution belongs to the set M1 for 0 = 0 we obtain cl = c4 = 0. The 
solution (2.7) also belongs to M1 when 0 = x if 

c2g(n)(e "~ - e - '~)  + O(m) = 0, g(0) = i f (O) + gf(0) 

S {-2c2 [f(0)e "~ - f ( - O ) e  -''~ ] + p2 (0)(ka(1 - e 2))-~ + c 3 }dO + O(m) = 0 
0 

Since for 0 < I e I < 1 we have [18] g(g) ~ 0, x ~ /s (s ~ 7/), for each of these values of e there is 
a unique system (cb c2) that guarantees transitions of the form 2 (-1 < e < 0) and 3 (0 < e < 1) 
(Fig. 4). This means that for any sufficiently small m the whole specified curve in the first .quadrant turns 
into the specified curve in the third quadrant if the mapping is constructed for x = n(aa/k) v2, which corres- 
ponds to varying 0 from 0 to re. It follows that the symmetric periodic orbits (2.6) can be extended with 
respect to m for all I e I < 1, including the case e = 0. For small m ~ 0 motion takes place inside the 
oval (Fig. 3). 

Note that the presence of an invariant set M2 also implies the existence of orbits close to elliptic ones 
and symmetric abouty for small m ~ 0 (Fig. 3). 

For any given v to each value x there correspond two valuesy' completely defined on M1. For v close 
to v* and m small enough there are local periodic orbits (x2 < x < x*) and orbits close to elliptic ones 
(x < xl = 2a + O(m)) .  Forxl < x < x2 the question of the existence of symmetric periodic orbits remains 
open for numerical investigation. The determination of the boundary value of m such that all elliptic 
orbits remain generating is another problem, and so is the study of symmetric periodic orbits for 
transcritical values of m. 
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To study the question of the existence of periodic orbits symmetric about M1 and M2, we transform 
[16] system (2.1) to the form 

d2x 2mdy_3m2x+kX=3Xx  
dx 2 dx 2 -~ 2 

d2y + 2m~..~__3m2y+ ky 3 
dx 2 ax z - ~ = - 2  xy 

(2.8) 

with Lyapunov parameter ~. = m 2. Then for ~, = 0 system (2.8) admits of the partial solution 

x = a c o s o x ,  y=as in t t~ ,  k la  3=to2+2mto+l,5m 2 (2.9) 

which describes circular orbits of radius a For the given value of a the motion in one direction ( ~ m  > 
0) evolves at lower angular velocity than the motion in the opposite direction. Thus, to/m -3 corresponds 
to ~ m  = 0 and ~ m  = -1 corresponds to the maximum value a = (2k/m2) 1/3. 

The solution of system (2.8), identical with (2.9) for ~ = 0, has the form 

x = a{(1 - ~ ) c o s  0ax + ;Lrlsin cox}, y = a{(1 - ~ ) s i n  ttrc- Xrlcos art } (2.10) 

where 

d2~ - x  2 ~ + 2(0} + rn)ot .... 
dz2 = 

m 2 
dq = -2(c0 + m)~ + ct+. ×2 = O12 + 2rnCO -- +... 
~'X "" 2 

in the zeroth approximation with respect to X (tx is an arbitrary constant). The solution (2.10) at 
x = 0 belongs to Ml if rl(0 ) = 0, ~'(0) = 0, and for x = rd(21 co I) it intersects M2 if rl and ~are  also 
equal to zero at that time. These conditions are satisfied by a unique value ~(0) at cx = 0 and ×-2 # N2co 2 
( N =  0, 1,2 . . . .  ). 

It follows that if h is given, there is a unique point on M i such that the trajectory starting from this 
point at x = rd(21 co I) reaches the fixed-point set M2. It follows that for this choice of x the image of 
M*I intersects M2 at a single point if one of the branches of M1 from one quadrant is considered. 

Periodic orbits symmetric simultaneously with respect to M1 and M2 can have radii a ~< [2k/(3m2)] 1/3. 
For a < [k/(3m2)] 1/3 all such orbits Can be constructed using Theorem 4. For larger values o fa  a direct 
verification of the conditions x = 0, y'  = 0 on M2 is necessary. 

3. THE T H R E E - B O D Y  P R O B L E M  

In the restricted three-body problem one studies the orbits of a point P of negligible mass in the 
gravitational field of two bodies (point masses) S and J. It is assumed that P has no effect on the motion 
of S or J. For a suitable choice of the scale and constants, the equations of motion for P have the form 
[91 

x"-2y'=OUlOx, y"+2x'=OUlOy (3.1) 

U - - ( l - l . t ) / R  1 +11/R 2 +(x  2 + y 2 ) / 2  

R21 =(x +l.t)2 + y 2, Rg =(x +l.t-1)2 + y 2 

(3.2) 

for the plane version of the problem, where 1 - tx and Ix are the dimensionless masses of S and J, and 
R1 and R2 are the distances from P to S and J, respectively. 

Below we consider a more general problem when P is also subject to radiation pressure from the 
radiation of one or two of the bodies S and J. In this case we have the photogravitational three-body 
problem, in which the force function U has the form [19] 

U=Ql(1-~t)l Ri +Q2~tI R2 +(x 2 + y 2 ) / 2  (3.3) 
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where the physically admissible parameters Q1 and Qz belong to the interval (--~, 1]. When Q1 = 
Q2 = 1, we have tile classical problem (3.1), (3.2). 

System (3.1) with potential (3.2) or, more generally, with potential (3.3) is a linearly reversible system 
of the form (1.1), (1.2) with an invariant set M = { x , y , x ' , y ' : y  = 0,x' = 0}, where I = n = 2. However, 
the presence of the energy integral 

2 2 
x" + y" = 2 Q l ( 1 - p . ) l  R t + 2Q2Ixl R 2 + ( x  2 + y 2 ) + h  (h=const)  (3.4) 

enables us to apply correctly the method in Section 1 to construct and classify symmetric periodic orbits. 
In the fixed-point set M we obtain 

2 
y = 2Qt (1 - IX)/I x + IXI+2Q2IX/I x + Ix - l l + x  2 + h (3 .5 )  

If  this equality is satisfied, we obtain from (3.4) 

2 
x = [ l  - QI ( l  - p,)/I x + IX 13 -Q2~t l l x  + IX - 113 ]y2 + o(y2 )  

The assertion below follows. 

Theorem 5. If lY I is sufficiently small compared to Ix + Ix I and Ix + IX + 1 I, then (3.5) is an necessary 
and sufficient condition for belonging to the invariant set in the part of the phase space where 

g ( x )  = QI (1 - Ix)/I x + [i,I 3 +Q2IX/I x + IX - II 3 > 1 (3.6) 

Obviously, (3.6) is not satisfied for any x if the force due to light pressure exceeds the gravitational 
force for each of the main bodies (Q1 < 0, Q2 < 0), and also in the degenerate case Q1 = Q2 = 0. 

We consider the case when Q1 ~> 0, Q2 ~> 0, where Q1 + Q2 > 0, which includes the case of the classical 
three-body problem Q1 + Q2 = 1. The graph ofg(x) is shown in Fig. 5. One can see that the minimum 
value is reached at x* = 1/(1 + t~) - Ix and 

g ( x * ) = ( l + o t ) 3 [ Q l ( l - I I ) + Q 2 p . l a  3 ] tx=IQ21J.l(Q~(l-Ix))] ~ 

Ifg(x*) > 1, therL Theorem 5 holds in the domain where x 1 < x < x 2. Otherwise the strip x3 <~ x <~ x4 
is beyond the scope of our consideration. 

The domain of possible motions can be determined from (3.4). It follows that for v > v* (v = -h), 
where v* is a positive number, a bounded invariant domain exists in the (x, y) plane for which all 
symmetric periodic orbits can be constructed on the basis of Theorem 5. To do this it is necessary to 
consider manifold 113.5) in domain (3.6) for a fixed constant energy value, and to construct the image 
of M ~ and define the points in the intersection M N M r belonging to (3.6). The last problem can be 

1 
l 

x, -p 

q 

r- 
I 

Fig. 5. 
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Fig. 6. 

solved correctly also for a numerical construction of M x because it is guaranteed that I Y I is small in 
this case (Fig. 6). 

Note that in the Copenhagen version [9] of the three-body problem (Q1 = Q2 = 1, Ix = 1/2) we have 
ct = 1, x* = O, g(x*) = 8 and (3.6) is satisfied. Thus, symmetric periodic orbits can be constructed in 
the domain where Xl < -0.5 and x2 < 0.5. 

4. A HEAVY R I G I D  BODY W I T H  A F I X E D  P O I N T  

Retaining the standard notation of [20], we write the equations of motion of the problem 

A d p l d t + ( C - B ) q r =  P(Y2Zc -Y3Yc), d~l I d t  = ~2 -q~3 (4.1) 

(pqr, ABC, xyz, 123) 

System (4.1) admits of three integrals, namely, the energy, the kinetic momentum, and the geometric 
integral 

AP 2 + Bq 2 +Cr2 + 2P(XcYt +YcY2 + zcY3) = 2h (h = const) 

Ap~ ! + Bqy 2 + Cry 3 = I~ (13 = const), y~ + y~ + y3 ~ = 1 
(4.2) 

Le tyc  = O. Then, apart from the invariant set {Y1, Y2, Y3,P, q, r:p  = q = r = 0} system (4.1) has the 
invariant set M = {Y1, Y2, Y3,P, q, r:. Y2 = 0, q = 0}. We obtain a system of the form (1.1) with I = 4 and 
n = 2 .  

Periodic motions symmetric with respect to M are of considerable interest. They include the Grioli 
regular precessions 

p = n ( x c - z c c o s x ) l l ,  q = n s i n x ,  r = n ( z c  + x c c o s x ) l l ,  x = n t - e + n l 2  

ii 2 
YI = - " ~ [  Czc cos x + ( B -  C)x c sin 2 x] 

2 

= ~ [(Ax~ + CZ~) sin'¢ - (A - C)xcz ~ sin x cos x] Y2 

tl 2 
Y3 = ~-~-[Ax, cosx+ (A - B ) z ,  sin 2 x] 

p21a 
t 2= + n'  = 

( A -  B)( B - C ) +  ( A -  B + C) 2 
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(e is a constant), which are possible [21] w h e n x J ( B  - C) = zc~l(A - B ) ( A  > B > C). For these motions 
the axis of precession is not vertical, the angle between the axis and the vertical direction being 8, where 

cosS = n2(A - B - C)/(PI) 

On the fixed-point set M we have 

~{2 I + y2 = 1, Apy  I + CrY3 = 6, AP 2 + Cr2 + 2P(xcYi  + ZcY3) = 2h (4.3) 

On the other hand, when (4.3) holds, we deduce that Y2 = 0 and q = 0 from integrals (4.2). 

Theorem 6. Conditions (4.3) are necessary and sufficient for belonging to the fixed-point set M. 
Thus, to construct all symmetric periodic motions for fixed h and 13 we define the curves F.  = {Y1 = 

cos o., Y2 = 0, Y3 -': sin tz, p = p(tx), q = 0, r = r(et)} with 1-'. C M, we then construct their projections 
Fp = {a ,p :p  = (,0t)} (Fr = {t~, r: r = r(tx)}) onto the (p, ct) or (r, t~) planes, and we find the image F .  ~ 
and its projection F~, or F~ Then a symmetric (2n/k)-periodic (k ~ N) motion corresponds to the value 
ct* at the point of  intersection of F .  and I~p (F.  and F~p) (Fig. 7). 

• F . Y . . 

The erastence of tz* can also be shown in the numerical constructmn of F . ,  because to every 
point in Fp A l -'~. (Fr tq F~) there corresponds a point in F. f3 ~ ,  and the other way round. 
The problem of th~ intersection of I v ,  and F~¢ can be solved correctly by the Cauchy theorem on the 
mean value of a continuous function. 

5. A H E A V Y  R I G I D  B O D Y  O N  A N  A B S O L U T E L Y  R O U G H  P L A N E  

The problem can be described by a closed system of six equations of the first order for the projections 
of co and y (or r) [3] 

Oco +lox (O. to )=mgrx~ i -mrx[ to"  x r + t o x r '  + t o x ( t o x r ) ] ,  l t  + t o x l t  = 0  (5.1) 

Here m is the mass of the body, to = (oh, ~ ,  ~ ) r  is the vector of the instantaneous angular 
velocity of  the body, g is the acceleration due to gravity, 0 is the central tensor of inertia o£ the 
body, r = (x,y, z) r is the radius vector of the point of contact of the body and the plane, and I¢ = (Y1, 
Y2, Y3) r is the unit vector of the vertical direction at this point pointing upwards. 

A relation between r and ~/can be established using the equation of the body surface. If the equation 
is written as f(r)  :-- 0, then 

I 
I ///II//ilIIIIIII/~IIIHHIIIIIIIIIIIIlIIIIIIIilIIIIIIIIIIII 

Fig. 7. Fig. 8. 
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? = - grad f ( r ) / I  grad f ( r ) l  (5.2) 

Below we consider the case when the axes of the attached system of coordinates are directed 
along the principal central axes of inertia and the body moves without jumps. In this case R~/ > 0, 
where 

R=mg~l-m[to" x r + t o x  r' +to  x ( tox r)] 

is the reaction of the supporting plane. 
System (5.1), (5.2) is linearly reversible, having the invariant set M. = {% to: to = 0} .  
The presence of the first two integrals 

m(to x r) 2 + to. (0. t o ) -  2mg(r .  ~,) = 2h (h -- const), `/l 2 +'/~ + "/32 = 1 

that is, the energy and the geometric integral, enables us to describe the problem by a system of four 
equations depending on h or a third-order non-autonomous system. 

Making the substitution 

`/i =sinecostp, `/~ =sinOsing, `/3 =cose (o~<e~<:t) (5.3) 
co I =pcos~0-qs in tp ,  co 2 =ps inq~+qcosg ,  co 3 = r  

we obtain 

0 = - q ,  ~ 0 ' = - r + p c t g 0  ( s i n 0 ¢ 0 )  

Let  X = --rsin 0 + pcos 0 be the projection of to x ~/onto the Gr  I axis perpendicular to G~ in the 
coordinate plane xy, where G is the centre of mass of  the body and G~ is the line of  intersection of 
the xy plane with that passing through the Gz axis and the vertical direction (Fig. 8). Therefore  X = 0 
if to x ~ /=  0 or if to x ~/~ 0, but to x ~, belongs to the G~z plane. When to x ~ /=  0, we have either to 
= 0 or  co and ` /are  collinear vectors. If  to = 0 all the time, we have an equilibrium state. If  to = 0 for 
at least two instants of  time, we obtain a periodic motion, since the set to = 0 is contained in the invariant 
set M*. If to becomes zero only once along the trajectory at t = t*, then for t > t* (t < t*) we have the 
general case of  to ~ 0. But if to x *y = 0, while to ~ 0, then in the case of a point of  contact with r x R 
= 0 we have permanent  rotation about the vertical axis. 

Let  to x ~/be a vector in the G~z plane. Then the vector of the instantaneous angular velocity must 
be perpendicular to this plane. Such a position of co at all times during the motion involves rolling in 
one direction on the G ~  plane. In particular ~p = 0 or ~0 = x/2, and we have rolling on the main planes 
Gxy or Gyz, under  the obvious condition that such motions are admissible. 

The feasibility of  these or  other motions is determined by the positions of  to and % and also by the 
form of the body surface. If the form is such that to the horizontal position to there corresponds a whole 
semi-trajectory of the system of equations (5.1) and (5.2), then all the remaining motions, with the 
exception of the equilibria and permanent  rotations about the vertical axis, can be described by 
introducing new "t ime" ~p. 

We now consider the formulae for transformation (5.3). In these formulae the angles tp and 0 and 
the new project ionsp,  q and r have different parts to play. Below, this will manifest itself in that ~[ # 0 
if co is a horizontal vector belonging at the same time to the G~z plane. Otherwise, rolling such that 
one of the main planes is parallel to the vertical plane can also be described with the new "time" q~. 

Lernma. The motion of a rigid body on an absolutely rough plane can be described with the new 
"t ime" ~0. The only exceptions are the equilibrium states (to = 0) and the permanent  rotations about 
the vertical axis (to × ~ /=  0). 

Note that the excluded motions are quite well known (see, for example, [4]). 
As a result of changing to the new independent variable tp, we obtain the following 2n-periodic third- 

order system 

dp I d9 = q + (cp'S) -l {(X + mxzr" )[(B + m(x 2 + z 2 )) cos ~0 + mxy sin ~0] + 

+( Y + myzr" )[(A + m(y2 + z 2 )) sin ~0 + mxy cos q~]} 
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dq / d9  = - p  - ( 9 S )  -t {(X + m x z r  )[(B + m ( x  2 + z: )) sin ~ - mxy cos 9] + 

+( Y + myzr" ) [ - (A + m ( y  2 + z 2 )) cos t~ + mxy sin ~]} 

951 

(5.4) 

dO l dcp = - q  l <p 

X = (B--  C)to2to 3 + m{g(73y  - 72z) - o~t ( x x  + y y  + z z )  + x (tolx + o~2y + toaz ) - 

2 -t~3y(0:hx + ~2Y) + tO2Z(tO3Z + tOlx) + yz(tO~ - t03 )} 

Y = (C- -  A)~3O 1 + m{g(Tiz  - 73x) - o)2 (xx  + y y  + zz ')  + y (0~, x + to2y + to3z) - 

- to l z ( to2y  + to3z) + to3x(tolx + to2y) + zx(to 2 - 0~ ) 

S = A B  + A m ( x  2 + z 2 ) + B m ( y  2 + z 2 ) + m2z 2 (x 2 + y2 + z 2 ), 0 = diag{A, B, C} 

On the f ight-hand side o f  this system it is necessary to express r in te rms of  ~/and to change to the new 
var iables  by (5.3). T h e  project ion r and velocity r" are e l iminated  by means  of  the energy integral.  

Suppose  that  the der ivat ivef~ is an odd function. Then  system (5.1), (5.2) has one  m o r e  fixed-point  
set  M = {71, 72, 73, to1, oh, o>3:72 = 0, oh = 0}. As a result, system (5.4) is invariant under  the substi tut ion 
(~ ,p ,  q, 0) ~ (--<p,p, --q, 0), tha t  is, it is a 2re-periodic l inearly reversible system with the fixed-point  set 
Mh = 07, q, 0: q = 0}. For  such a system T h e o r e m  3 enables  us to construct  all symmetr ic  mot ions  that  
are  (2n/k)-periodic in ~ (k ~ N). Clearly, by substi tuting tp(t) in place of  ~, where  

f d~o l 
- r ( tp )  + c tg0(~)  

(5.5) 

we can construct  all symmet r ic  per iodic  mot ions  of  system (5.1), (5.2). 

Theorem 7. Let  l~nh be the set o f  all symmet r ic  mot ions  of  system (5.4) that  are (2rc/k)-periodic in 0 
(k ~ I~1) for  a given value of  the constant  energy h. Then  1)~ t"l M h (Z M h CI ~ ,  and the initial values 
for  all symmetr ic  per iodic  mot ions  of  system (5.1), (5.2) with f~(x, -y, z) = -f 'y(x,y,  z )  at a given level h 
can be  de te rmined  f rom the fo rmulae  

7 1 = s i n 0 . ,  " /2=0 ,  7 3 = c o s 0 . ,  0 h = p . ,  ~ 2 = 0 ,  o~3=r.  

where  (p., q.,  0.) c M h CI M~. 
T h e  p rob lem of de te rmin ing  the points  M h CI M~ has a correct  solution. Indeed,  we can choose  a 

straight line Fh = 07, q, 0: q = 0, 0 = 00}, where  00 is a fixed number  from the interval (0, rc], and construct 
F~ C M~.  Then  F~ contains  a poin t  f rom M h i f q  changes its sign on F~. 

Finally, we observe  that  the p rob lems  in Sections 2 -4  can be reduced to the investigation of  a 2re- 
per iodic  reversible: system and studied in the same way as the p rob lem in Section 5. 
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